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1. Introduction

The quest for physics beyond the standard model will soon enter an exciting phase as the

LHC starts colliding protons at 14 TeV. At such an energy we will be probing the mecha-

nism which breaks the electroweak symmetry and hopefully understand what stabilizes the

associated scale. Whether this mechanism can be described perturbatively by a standard

model Higgs or can be related to new symmetries (such as supersymmetry) or even to

the discovery of an extended space-time structure, is the subject of an intense theoretical

activity. The possibility, however, of answering such far reaching questions at the LHC will

eventually depend on our ability to discriminate signals of new physics from large standard

model backgrounds. With so much energy available in the center of mass, the cross section

for multi-jet QCD events even associated with heavy objects such as weak bosons or top

quarks will be in most cases very large if not overwhelming.

As the need for better predictions for QCD processes with many particles in the final

state has become clear, a substantial activity on developing the techniques and the tools

to perform such calculations has spurred. Several codes have by now become available

that can compute, numerically, tree-level cross sections and generate events with many

particles in the final state in an automatic way [1 – 4]. Progress has been significant also

in improving the accuracy of the predictions by calculating next-to- and next-to-next-to-

leading QCD corrections for processes with up to three and just one particle in the final

state respectively [5].

In the midst of this effort, unexpected theoretical progress has come from the so-called

twistor-inspired methods [6], which have provided new techniques to compute analytic
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results for gauge amplitudes both at tree and one-loop level [7]. These new methods go

back to a correspondence between a weakly coupled N = 4 Super Yang-Mills theory and

a certain type of string theory. The key point in this correspondence is that all tree-level

(color-ordered) amplitudes are related to algebraic curves in twistor space. In ref. [8] it

was shown that this leads to the so-called CSW rules, which state that all tree-level (color-

ordered) amplitudes can be constructed using a small class of very special amplitudes, the

maximally helicity violating (MHV) amplitudes. Another important result has been the

formulation of a new kind of recursive relations in addition to the well-known Berends-

Giele recursion [9], the so-called BCF relations [10, 11]. They state that any tree-level

(color-ordered) amplitude can be constructed from products of two on-shell amplitudes of

fewer particles, multiplied by a simple scalar propagator. These new calculational tools

have allowed to derive expressions for some multi-parton amplitudes [8, 12, 13] and certain

classes of splitting functions [14, 15], which have simple and compact analytic forms. In

ref. [16] the BCF relations were employed to present a rigorous proof of the CSW rules,

which have originally been obtained heuristically. So far, many extensions of the twistor-

inspired methods have been presented, in particular generalizations to include scalars [17],

fermions [18, 19] and photons [20].

The purpose of this work is to present a new extension of the twistor-inspired methods.

We show that it is possible to reformulate the twistor-inspired recursive relations for the

color-ordered amplitudes in terms of the full amplitudes. The motivations are twofold.

The first is mostly theoretical and stems from the observation of an interesting similarity

between a color decomposition based on the adjoint representation and the BCF recursive

relations which suggested the existence of a formulation that embodies both. The second

is more pragmatic and aims at establishing whether the new twistor-inspired recursive

relations are an improvement also at the numerical level. In order to make a consistent

comparison with the most efficient algorithms available [1, 21], a recursive formulation

which includes color is necessary. In the standard approach where the color-ordered ampli-

tudes are calculated analytically (or numerically), one has to sum over the permutations

of the color orderings to obtain the full amplitude. This algorithm has an intrinsic fac-

torial growth and cannot compete with the available numerical methods which only grow

exponentially. In this work we derive a general method to reinstate color into the recursive

relations for color-ordered amplitudes and apply it to the BCF and to a modified version

of the CSW relations.

The paper is organized as follows. In section 2 we review the notion of color decompo-

sitions, highlighting the different features of the various color bases available. In section 3

we discuss the Berends-Giele recursive relations and we present a simple derivation of their

color-dressed counterpart which serves as an illustration of the method that will be applied

later. In section 4 we prove our first main result, i.e., the color-dressed version of the BCF

relations, eq. (4.12) and discuss its most important features. In section 5 we reformulate

the CSW relations in terms of simple new three-point effective vertices and derive their

color-dressed version. Section 6 contains the numerical results on the evaluation of multi-

gluon amplitudes obtained using the different color-dressed recursive relations, focusing on

the comparison with known techniques. Finally we draw our conclusions.
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2. Color decompositions

In this section we briefly review the notion of color decomposition of tree-level QCD am-

plitudes and the available results. Emphasis is given to those aspects that will play an

important role in the following.

The basic idea of a color decomposition is to factorize the information on the gauge

structure from the kinematics. As an example, consider the amplitude for n gluons of

colors a1, a2, . . . , an (ai = 1, . . . , N2 − 1). One can easily prove that at tree level, such an

amplitude can be decomposed as [22]

A(1, . . . , n) =
∑

σ∈Sn−1

Tr (T a1T aσ2 · · ·T aσn ) A(1, σ2, . . . , σn) , (2.1)

where T a are the fundamental-representation matrices of SU(N), and the sum is over all

(n− 1)! permutations of (2, . . . , n). Each trace corresponds to a particular color structure.

The factor associated with each color structure, A, is called a color-ordered amplitude.1 It

depends on the four-momenta pi and polarization vectors εi of the n gluons, represented

simply by i in its argument. The color-ordered amplitudes are far simpler to calculate

than the full amplitude A due to the smaller number of Feynman diagrams contributing to

them. They have several remarkable properties. Among them, a special role is played by

the so-called Kleiss-Kuijf relations [23]. These are linear relations amongst the amplitudes

directly inherited from the gauge structure,i.e., from color, which in the case of n-gluon

amplitudes reduce the number of linearly-independent amplitudes to (n − 2)!. It is then

clear that the number of terms in eq. (2.1) is not minimal. This decomposition has no

special feature except that it was inspired by string theories (color factors are the Chan-

Paton factors of the open strings). It is universally used to illustrate the idea of color

decomposition and to define the color-ordered amplitudes A in terms of the full amplitude

A. It can be shown, however, that this definition does not depend on the color basis.

Recently, another decomposition has been introduced, which is based on color flows [24,

25]. This decomposition arises when treating the SU(N) gluon field as an N × N matrix

(Aµ)ij (i, j = 1, . . . , N), rather than as a one-index field Aa
µ (a = 1, . . . , N2 − 1). The

n-gluon amplitude may then be decomposed as

A(1, . . . , n) =
∑

σ∈Sn−1

δ
̄σ2

i1
δ
̄σ3

iσ2
· · · δ̄1

iσn
A(1, σ2, . . . , σn) , (2.2)

where the sum is over all (n − 1)! permutations of (2, . . . , n). The partial amplitudes that

appear in this decomposition are the same as in the decomposition in the fundamental

representation. The color-flow decomposition has several nice features, the most attractive

one being its simplicity. In fact, it is a very natural way to decompose a QCD amplitude,

and as the name suggests, it is based on the flow of color, so the decomposition has a

simple physical interpretation. It does not involve any color matrix and the color factors in

front of each amplitude are either zero or one. This basis makes the numerical calculation

1Also referred to as a dual amplitude or partial amplitude.
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of color factors in the evaluation of full amplitudes fast, even though the number of terms

in the sum over the (n − 1)! permutations is not minimal. Finally, such a decomposition

exists for all tree-level parton amplitudes including any number of quark pairs and gluons.

A third decomposition of the multi-gluon amplitude is available, which is based on the

adjoint representation of SU(N) rather than the fundamental representation [26, 27]. The

n-gluon amplitude in this decomposition may be written as

A(1, . . . , n) =
∑

σ∈Sn−2

(F aσ2F aσ3 · · ·F aσn−1 )a1an A(1, σ2, . . . , σn−1, n) , (2.3)

where (F a)bc = −ifabc are the adjoint-representation matrices of SU(N) (fabc are the struc-

ture constants), and the sum is over all (n−2)! permutations of (2, . . . , n−1). The indices

corresponding to the first and the last gluon are taken as “references” and are not included

in the permutations. The partial amplitudes that appear in this decomposition are the

same as in the other decomposition, but only the (n− 2)! linearly-independent amplitudes

are needed. In this respect this formulation is “minimal” as there is no redundancy and

the Kleiss-Kuijf relations are embodied in the color factors. As we will elaborate upon in

the following, there exists a remarkable formal similarity with the BCF recursive relations,

where two gluons are also taken as a reference to build up the full amplitude.

3. Color-dressed Berends-Giele relations

In ref. [9], Berends and Giele introduced the color-ordered n-point gluon off-shell current Jµ,

which can be defined as the sum of all color-ordered Feynman diagrams with n external on-

shell legs and a single off-shell leg with polarization µ. The color-ordered off-shell currents

can be constructed using the Berends-Giele recursive relations

Jµ(1, 2, . . . , n) =
−i

P 2
1,n

{

n−1
∑

k=1

V
µνρ
3 (P1,k, Pk+1,n)Jν(1, . . . , k)Jρ(k + 1, . . . , n) (3.1)

+

n−2
∑

j=1

n−1
∑

k=j+1

V
µνρσ
4 Jν(1, . . . , j)Jρ(j + 1, . . . , k)Jσ(k + 1, . . . , n)

}

,

where

Pi,j = pi + pi+1 + · · · + pj−1 + pj, (3.2)

and V
µνρ
3 (P1,k, Pk+1,n) and V

µνρσ
4 are the color-ordered three and four-gluon vertices de-

fined in ref. [28]. It is easy to see that the four-gluon vertex appearing in these relations

introduces a larger number of possible combinations of subcurrents than the three-gluon

vertex. It is possible to simplify the recursion by decomposing all four-gluon vertices into

three-vertices including a tensor particle (figure 1). Using this decomposition, the Berends-

Giele recursive relations can be rewritten such that only three-point vertices are present

Jµ(1, 2, . . . , n) =
−i

P 2
1,n

n−1
∑

k=1

{

V
µνρ
3 (P1,k, Pk+1,n) Jν(1, . . . , k)Jρ(k + 1, . . . , n) (3.3)
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Figure 1: Diagrammatic representation of the decomposition of the color-ordered four-gluon ver-

tex.

+ V
νµαβ
T Jν(1, . . . , k)Jαβ(k + 1, . . . , n) + V

µσαβ
T Jαβ(1, . . . , k)Jσ(k + 1, . . . , n)

}

,

where Jαβ is a tensor off-shell current, and V
µναβ
T is the tensor-gluon vertex, defined as

V
µνρσ
T =

ig

2
(gµρgνσ − gµσgνρ) . (3.4)

As there exists no one-point tensor off-shell current, all such currents appearing in eq. (3.3)

are defined as zero. The tensor off-shell currents can be easily constructed recursively from

gluon off-shell currents

Jµν(1, 2, . . . , n) = iDµναβ V
σραβ
T

n−1
∑

k=1

Jρ(1, . . . , k)Jσ(k + 1, . . . , n), (3.5)

where iDµναβ is the color-ordered tensor “propagator”, defined as

iDµνρσ = −
i

2
(gµρgνσ − gµσgνρ) . (3.6)

We now present a systematic method to dress color-ordered recursive relations with

color in order to obtain recursive relations for the color-dressed off-shell currents. In the

color-flow decomposition, a color-dressed gluon off-shell current can be written as

J µ

IJ̄
(1, 2, . . . , n) =

∑

σ∈Sn

δJ̄
iσ1

δ
̄σ1

iσ2
. . . δ

̄σn

I Jµ(σ1, σ2, . . . , σn), (3.7)

where (I, J̄) is the color of the off-shell leg. A color-dressed tensor off-shell current can

be obtained similarly. We will explain the color dressing of the Berends-Giele recursive

relations, eq. (3.3), dealing with the pure gluon vertices and the tensor-gluon vertices

separately. After inserting eq. (3.3), into the color-flow decomposition, eq. (3.7), the three-

gluon vertex part reads

−i

P 2
1,n

∑

σ∈Sn

n−1
∑

k=1

δJ̄
iσ1

δ
̄σ1

iσ2
. . . δ

̄σn

I V
µνρ
3

(

Pσ1,σk
, Pσk+1,σn

)

Jν(σ1, . . . , σk)Jρ(σk+1, . . . , σn), (3.8)

where

Pσ1,σk
= pσ1

+ pσ2
+ · · · + pσk

,

Pσk+1,σn = pσk+1
+ pσk+2

+ · · · + pσn .
(3.9)
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J̄

I
J µ

M

N̄

J ρ

L
K̄

H

Ḡ

N
M̄

J̄

I

G

H̄

K
L̄

J ν

Figure 2: Diagrammatic representation of the decomposition (3.10) of the color factor of the

three-gluon vertex part.

The color factor appearing in eq. (3.8) can be written as (figure 2)

δJ̄
iσ1

δ
̄σ1

iσ2
. . . δ

̄σn

I = δJ̄
GδH̄

I δḠ
L δK̄

N δM̄
H δL̄

iσ1
. . . δ

̄σk

K δN̄
iσk+1

. . . δ
̄σn

M , (3.10)

where

• δJ̄
GδH̄

I is the color structure of the propagator appearing in the Berends-Giele recursive

relations.

• δL̄
iσ1

. . . δ
̄σk

K is the color structure of the subcurrent Jν(σ1, . . . , σk), where the off-shell

leg ν has color (K, L̄).

• δN̄
iσk+1

. . . δ
̄σn

M is the color structure of the subcurrent Jρ(σk+1, . . . , σn), where the

off-shell leg ρ has color (M, N̄ ).

• δḠ
L δK̄

N δM̄
H is part of the color structure of a three-gluon vertex to which the off-shell

legs µ, ν, ρ with colors (G, H̄), (K, L̄), (M, N̄) are attached.

We now define an ordered partition of a set E into two independent parts as a pair

(π1, π2) of subsets of E such that π1 ⊕ π2 = E, which means (π1, π2) 6= (π2, π1). Further-

more, we call (unordered) partition of a set E into two independent parts a set {π1, π2}

of subsets of E such that π1 ⊕ π2 = E and {π1, π2} = {π2, π1} . These definitions can be

easily extended to partitions of a set E into n > 2 independent parts, for both the ordered

and the unordered case.

In the case encountered here E = {1, 2, . . . , n}. We will denote the set of all ordered

partitions of E into two independent parts by OP (n, 2) and the set of all (unordered)

partitions of E into two independent parts by P (n, 2). Using these definitions, the sum

over permutations appearing in eq. (3.8) can be decomposed as follows: For a given value

of k,
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• Choose an ordered partition π = (π1, π2) in OP (n, 2) such that #π1 = k, where #π1

is the number of elements in the set π1.

• Fix the first k elements of the permutation to be in the subset π1.

• Sum over all permutations of the first k elements and over all permutations of the

last n − k elements.

• Sum over all possible choices for the ordered partition π = (π1, π2).

This is equivalent to the replacement

n−1
∑

k=1

∑

σ∈Sn

→
∑

π∈OP (n,2)

∑

σ∈Sk

∑

σ′∈Sn−k

. (3.11)

The three-gluon vertex part now reads

δJ̄
GδH̄

I

−i

P 2
1,n

∑

π∈OP (n,2)

∑

σ∈Sk

∑

σ′∈Sn−k

δḠ
L δK̄

N δM̄
H V

µνρ
3

(

Pσ
π1 ,σ

πk
, Pσ′

πk+1
,σ′

πn

)

δL̄
iσ

π1
. . . δ

̄σ
πk

K Jν(σπ1 , . . . , σπk) δN̄
iσ′

πk+1

. . . δ
̄σ′

πn

M Jρ(σ
′
πk+1, . . . , σ

′
πn), (3.12)

where π1 = {π1, π2 . . . , πk} and π2 = {πk+1, πk+2, . . . , πn}.

Clearly, Pσ
π1 ,σ

πk
and Pσ′

πk+1
,σ′

πn
only depend on the choice of the ordered partition π =

(π1, π2), but not on the order of the elements in π1 and π2. We therefore define

Pπ1
= pπ1 + pπ2 + · · · + pπk ,

Pπ2
= pπk+1 + pπk+2 + · · · + pπn .

(3.13)

It is now possible to identify several subcurrents in this expression, namely

JKL̄
ν (π1) =

∑

σ∈Sk

δL̄
iσ

π1
. . . δ

̄σ
πk

K Jν(σπ1 , . . . , σπk), (3.14)

J MN̄
ρ (π2) =

∑

σ′∈Sn−k

δN̄
iσ′

πk+1

. . . δ
̄σ′

πn

M Jρ(σ
′
πk+1, . . . , σ

′
πn), (3.15)

so that the three-gluon vertex part reads

δJ̄
GδH̄

I

−i

P 2
1,n

∑

π∈OP (n,2)

δḠ
L δK̄

N δM̄
H V

µνρ
3 (Pπ1

, Pπ2
) J KL̄

ν (π1) J MN̄
ρ (π2). (3.16)

In ref. [25] it was shown that the (color-dressed) three-gluon vertex can be expressed in

the color-flow decomposition as2

Vµνρ
3 (Pπ1

, Pπ2
) = δḠ

L δK̄
N δM̄

H V
µνρ
3 (Pπ1

, Pπ2
) + δḠ

NδM̄
L δK̄

H V
µρν
3 (Pπ2

, Pπ1
) . (3.17)

2For brevity, the color indices of the vertex are not written explicitly.
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Figure 3: Color-flow structure of the s-channel contribution to the four gluon vertex.

So, finally the three-gluon vertex part can be written as

δJ̄
GδH̄

I

−i

P 2
1,n

∑

π∈P (n,2)

Vµνρ
3 (Pπ1

, Pπ2
)JKL̄

ν (π1) JMN̄
ρ (π2). (3.18)

We now address the tensor-gluon part in the Berends-Giele recursive relations, eq. (3.3).

From figure 3 it can be seen that for the s-channel appearing in the decomposition of the

four-gluon vertex, each tensor-gluon vertex has the same color-flow structure as a three-

gluon vertex. The t-channel contribution is similar. Therefore the tensor-gluon vertex can

be written in the color-flow decomposition as

Vµναβ
T = δJ̄

i1
δ
̄1
i2

δ
̄2
I V

µναβ
T + δJ̄

i2
δ
̄2
i1

δ
̄1
I V

νµαβ
T , (3.19)

where (I, J̄) is the color of the tensor particle. The color dressing of the tensor-gluon part

in eq. (3.3) is hence exactly the same as for the pure gluon part, leading to

∑

π∈OP (n,2)

δḠ
L δK̄

N δM̄
H

{

V
νµαβ
T JKL̄

ν (π1)J
MN̄
αβ (π2) + V

µναβ
T J KL̄

αβ (π1)J
MN̄
ν (π2)

}

. (3.20)

As the sum runs over all elements in OP (n, 2), we can exchange π1 and π2 as well as the

color indices (K, L̄) and (M, N̄ ) in the last term. Using eq. (3.19) the tensor part now

becomes
∑

π∈OP (n,2)

Vµναβ
T JKL̄

ν (π1)J
MN̄
αβ (π2). (3.21)

Hence the color-dressed recursive relations with all four-gluon vertices replaced by tensor

particles read

J IJ̄
µ (1, . . . , n) = Dµν (P1,n)

[

∑

π∈P (n,2)

Vνρσ
3 (Pπ1

, Pπ2
) JKL̄

ρ (π1)J
MN̄
σ (π2)

+
∑

π∈OP (n,2)

Vµραβ
T J KL̄

ρ (π1)J
MN̄
αβ (π2)

]

. (3.22)

To complete the color dressing of the Berends-Giele recursive relations, we have to

apply the color-dressing method introduced above to the recursive relations for the off-

shell tensor-currents, eq. (3.5). Both the color-dressed vertex and the color-dressed off-shell

– 8 –
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tensor-current have the same form as in the pure gluon case and the recursive relations

for the tensor particle, eq. (3.5), have the same structure as for the three-gluon vertex

part in the previous section. Therefore, one can immediately write down the color-dressed

recursive relations for the off-shell tensor-current

J IJ̄
µν (1, 2, . . . , n) = iDµναβ Vσραβ

T

∑

π∈P (n,2)

J KL̄
ρ (π1)J

MN̄
σ (π2). (3.23)

The two recursive relations, eq. (3.22) and eq. (3.23), can be solved simultaneously to con-

struct color-dressed gluon off-shell currents for arbitrary n. The full color-dressed scattering

amplitude is then recovered be putting the off-shell leg on-shell. This result is equivalent

to the Dyson-Schwinger algorithm presented in ref. [4]. It should be noticed that the color-

dressed recursive relations have the same form as the color-ordered Berends-Giele recursive

relations, eq. (3.3) and eq. (3.5). The only difference between the color-ordered and the

color-dressed case is that in the latter we sum over unordered objects and no permutations

need to be taken into account. This is a general feature which will turn out to be common

to all color-dressed recursive relations.

4. Color-dressed BCF relations

In this section, we apply the same method employed to construct the color-dressed Berends-

Giele recursive relations to the BCF recursive relations, presented in refs. [10, 11]. Assuming

that gluons 1 and n have opposite helicities, the BCF recursive relations read

An(1, 2, . . . , n) =

n−2
∑

k=2

Ak+1

(

1̂, 2, . . . , k,−P̂−h
1,k

) 1

P 2
1,k

An−k+1

(

P̂ h
1,k, k + 1, . . . , n̂

)

, (4.1)

where a sum over the helicities h of the intermediate gluon is implicit, and

P̂1,k = P1,k +
P 2

1,k

〈n|P1,k|1]
λnλ̃1, (4.2)

p̂1 = p1 +
P 2

1,k

〈n|P1,k|1]
λnλ̃1, (4.3)

p̂n = pn −
P 2

1,k

〈n|P1,k|1]
λnλ̃1, (4.4)

with λi and λ̃i being the spinor components of pi = λi λ̃i.

As in eq. (4.1) we have to choose two reference gluons, 1 and n, the color-flow decom-

position and the color decomposition in the fundamental representation are not well suited

to dress the BCF recursive relations with color, because they allow us to fix only one of

the two reference gluons. The most natural color decomposition which fixes both reference

gluons is the color decomposition in the adjoint representation, eq. (2.3). Inserting the

color-ordered BCF relations, eq. (4.1), into eq. (2.3), one finds

An (1, . . . , n) =

n−2
∑

k=2

∑

σ∈Sn−2

(F aσ2 . . . F aσn−1 )a1an
Ak+1

(

1̂, σ2, . . . , σk,−P̂−h
1,σk

)
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1

P 2
1,σk

An−k+1

(

P̂ h
1,σk

, σk+1, . . . , σn−1, n̂
)

, (4.5)

where

P1,σk
= p1 + pσ2

+ · · · + pσk
. (4.6)

For a given value of k, the sum over permutations appearing in eq. (4.5) can be decomposed

in a similar way as for the three-gluon vertex part in the Berends-Giele recursive relations.

The procedure is as follows

• Choose an ordered partition π = (π1, π2) of {2, 3, . . . , n − 2, n − 1} such that #π1 =

k − 1.

• Fix the first k − 1 elements of the permutation to be in the subset π1.

• Sum over all permutations of the first k − 1 elements and over all permutations of

the last n − k − 1 elements.

• Sum over all possible choices for the ordered partition π = (π1, π2).

This is equivalent to the replacement

n−2
∑

k=2

∑

σ∈Sn−2

→
∑

π∈OP (n−2,2)

∑

σ∈Sk−1

∑

σ′∈Sn−k−1

, (4.7)

where by OP (n − 2, 2) we denote the set of all ordered partitions of {2, 3, . . . , n − 1}.

Furthermore, for a fixed value of k, the color factor can be written

(F aσ2 . . . F aσn−1 )a1an
= (F aσ2 . . . F aσk )a1x (F aσk+1 . . . F aσn−1 )xan

, (4.8)

where a sum over x = 1, . . . , 8 is understood.

Finally, the propagator clearly only depends on the choice of the ordered partition π =

(π1, π2) and not on the order of the elements in π1 and π2. If π1 = {π2, π3, . . . , πk}, we

define

P1,π1
= p1 + pπ2 + pπ3 + · · · + pπk ,

Pπ2,n = −P1,π1
.

(4.9)

At this point it is possible to identify subamplitudes in the expression for An, namely

∑

σ∈Sk−1

(

F
aσ

π2 . . . F
aσ

πk
)

a1x
Ak+1

(

1̂, σπ2 , . . . , σπk ,−P̂−h
1,π1

)

= Ak+1

(

1̂, π1,−P̂
−h,x
1,π1

)

, (4.10)

∑

σ′∈Sn−k−1

(

F
aσ′

πk+1 . . . F
aσ′

πn−1

)

xan

An−k+1

(

−P̂−h
π2,n, σ′

πk+1 , . . . , σ
′
πn−1 , n̂

)

= An−k+1

(

−P̂−h,x
π2,n , π2, n̂

)

, (4.11)
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=An
...

1

n

Σπ

n̂

π

π̄

P1,π

1̂
...

...An−k+1

Ak+1

Figure 4: Diagrammatic representation of the color-dressed BCF recursive relations.

where x is the color of the intermediate gluon.

Collecting all the pieces, the color-dressed BCF recursive relations read

An(1, 2, . . . , n) =
∑

π∈OP (n−2,2)

Ak+1

(

1̂, π1,−P̂
−h,x
1,π1

) 1

P 2
1,π1

An−k+1

(

P̂
h,x
1,π1

, π2, n̂
)

. (4.12)

We emphasize that although the proof of these new recursive relations relies on the

adjoint color basis, the final result, eq. (4.12), is independent of the choice of the basis.

Furthermore, as in the case of the Berends-Giele recursive relations, we see that the form of

the color-dressed BCF recursive relations stays the same as in the color-ordered case, with

the only difference that in eq. (4.12) the sum goes over all partitions of {2, 3, . . . , n−1}, i.e.,

over unordered objects. This implies that the new color-dressed BCF recursive relations

have the same properties as in the color-ordered case, namely

1. The definition of the off-shell shifts, eqs. (4.2)–(4.4), is independent of the color.

2. As in the color-ordered BCF recursive relations, the pole structure of the scattering

amplitude is manifest in eq. (4.12).

3. Similar to the color-ordered case, the subamplitudes in eq. (4.12) are not independent,

but they are are linked via the off-shell shifts.

The result (4.12) obtained for amplitudes containing only gluons can be easily ex-

tended to include a single quark pair. For amplitudes containing a single qq̄ pair, the color

decomposition reads [28]

An(1q, 2, . . . , n − 1, nq̄) =
∑

σ∈Sn−2

(T aσ2 . . . T aσn−1 ) ̄
i An (1q, σ2, . . . , σn−1, nq̄) . (4.13)

The BCF recursive relations for color-ordered amplitudes still hold when a quark pair is

included, where either a quark or a gluon can be chosen as the intermediate particle [18]. If
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a quark is chosen for the internal line, no sum over helicities has to be carried out, because

helicity is conserved all along the fermion line. The BCF recursive relations then read

An(1h
q , 2, . . . , n−h

q̄ ) =

n−2
∑

k=2

Ak+1

(

1̂h
q , 2, . . . , k,−P̂−h

q̄,1k

)

(4.14)

1

P 2
q,1k

An−k+1

(

P̂ h
q,1k, k + 1, . . . , n − 1, n̂−h

q̄

)

,

where h is the helicity of the quark. Both the recursive relations and the color decomposi-

tion have the same form as in the case of a pure gluon amplitude, with the only difference

that instead of working in the adjoint representation one now has to work in the funda-

mental representation of SU(3). So the recursive relations derived in the case of pure gluon

amplitudes can be easily extended to include a single qq̄ pair

An(1h
q , 2, . . . , n−h

q̄ ) =
∑

π∈OP (n−2,2)

Ak+1

(

1̂h
q , π1,−P̂

−h,x
q̄,1π1

) 1

P 2
q,1π1

An−k+1

(

P̂
h,x
q,1π1

, π2, n̂
−h
q̄

)

. (4.15)

The formula is exactly the same as in the pure gluon case, up to two small differences:

• no helicity sum has to be carried out for the internal line

• x is a color index in the fundamental representation.

It is possible to extend this relation to include photons, by simply performing the substi-

tution

(T a) ̄
i → δ

̄
i . (4.16)

From this it follows that a QED amplitude containing a single qq̄ pair and n − 2 photons

can be written in terms of color-ordered amplitudes as

AQED
n (1q, 2, . . . , n − 1, nq̄) =

∑

σ∈Sn−2

An(1q, σ2, . . . , σn−1, nq̄). (4.17)

Thus the above recursive relations (4.14) still hold for QED amplitudes. This particular

result has already been pointed out by Stirling and Ozeren in ref. [20]. However, as shown

there, for QED processes it is more efficient to take one of the fermions and one photon

as reference particles. In fact, as there is no photon-photon vertex, all the terms in the

recursive relations where both fermions are in the same subamplitude vanish, simplifying

the calculation.

5. Color-dressed CSW rules

In this section we present the color-dressing of the CSW vertex rules introduced in refs. [6 –

8]. These rules state that it is possible to build all color-ordered amplitudes from MHV

vertices, connecting them by scalar propagators. Each off-shell leg with momentum P

then corresponds to a spinor Paȧη
ȧ, using some arbitrary antiholomorphic reference spinor
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ηȧ. However, the CSW rules imply that an n-point color-ordered amplitude may have

contributions from MHV vertices involving up to n particles. The number of different

vertices is thus growing steadily with the number of particles, which makes it impossible

to put the Berends-Giele recursive relations and the CSW rules on the same footing. This

problem has also been addressed in ref. [29]. Here we introduce a new method to decompose

an MHV vertex into three-point vertices involving an auxiliary particle and derive recursive

relations for both the auxiliary particle and the scalar propagators. Once these relations

have been obtained, the corresponding color dressing is performed.

In analogy to the Berends-Giele recursive relations we define an n-point scalar off-shell

current Jh(1, . . . , n) as the sum of all MHV diagrams with n external on-shell legs, and

one off-shell leg with helicity h.3 This scalar off-shell current can be easily constructed

employing the CSW rules:

Jh(1, . . . , n) =
1

P 2
1,n

[

n−1
∑

i=1

A3

(

−P−h
1,n , P h1

1,k, P h2

k+1,n

)

Jh1
(1, . . . , i)Jh2

(i + 1, . . . , n)

+
n−2
∑

i=1

n−1
∑

j=i+1

A4

(

−P−h
1,n , P h1

1,i , P h2

i+1,j , P h3

j+1,n

)

Jh1
(1, . . . , i)

Jh2
(i + 1, . . . , j)Jh3

(j + 1, . . . , n) + · · ·

]

, (5.1)

where the dots indicate terms with higher order MHV vertices. A sum over helicities

(h, h1, h2, . . .) with −h+ h1 + h2 + · · · = n− 4 is understood. According to the CSW rules,

the vertices An correspond to off-shell continued n-point MHV amplitudes.

However, as mentioned above in this form the CSW relations imply a factorial growth

in the color-dressed case, because of possibly large numbers of legs at single MHV vertices

and the associated permutations of these legs. In order to tame this growth, we rewrite

the CSW relations in a form similar to the Berends-Giele recursion with a tensor particle,

where the terms in table 1 serve as basic building blocks. We first introduce auxiliary

double-lines, carrying threefold information:

• The total momentum P flowing in the double-line.

• A pair (kl, kr), describing the momenta flowing in each of the two lines separately.

Notice that in general kl + kr 6= P .

• A pair (a, b), describing the momenta of the negative helicity legs in the corresponding

MHV amplitude contained in the off-shell current. If no negative helicity gluon is

attached to the double-line, then a = b = 0, and if only one negative helicity gluon

is attached, then b = 0.

3In the context of the CSW rules, it makes sense to talk about the helicity of an off-shell particle. As the

off-shell continuation of the spinors involves an arbitrary reference spinor ηȧ, the scalar off-shell currents

are not gauge invariant objects. However, the ηȧ dependence drops out in the end [8].
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Right-handed Vertices
i j

k
V

hi,hj,hk

GG (i, j, k) =
〈αβ〉4

〈ij〉〈jk〉〈ki〉

i j

k
V

hi,hj ,akbk

AG (i, j) =
1

〈ij〉
δkliδkrj ε(hi, hj , akbk)

i j

k
V

aibi,hj ,akbk

AAR (il, ir, j) =
1

〈irj〉
δklilδkrj ε(aibi, hj , akbk)

i j

k
V

aibi,hj ,hk

GAR (il, ir, j) =
〈αβ〉4

〈irj〉〈jk〉〈kil〉
ε(aibi, hj , hk)

Table 1: Right-handed basic building blocks in the MHV decomposition of color-ordered ampli-

tudes in the CSW approach. Details are given in the text.

In order to build recursive relations where all n-point MHV vertices for n ≥ 4 are de-

composed into three-point vertices, we define n-point (off-shell) double-line currents

Jab
uv(1, . . . , n), where 1 ≤ u ≤ v < n, as the sum of all diagrams with n external on-shell

legs and an (off-shell) auxiliary double-line. This line carries the information (kl, kr) =

(P1,u, Pv+1,n) and (a, b), a and b being the momenta of the negative helicity gluons at-

tached to it.4 Furthermore, in the color-ordered case, a must be of the form a = Pi,j with

(i, j) constrained to one of the following possibilities

1 ≤ i ≤ j ≤ u,

u + 1 ≤ i ≤ j ≤ v,

v + 1 ≤ i ≤ j ≤ n

(5.2)

and equivalently for b. Notice that according to our definition there are no one-point

double-line currents. For later convenience we define all one-point double-line currents as

zero. All other double-line currents can be built recursively employing the vertices given

in table 1, yielding

Jab
uv(1, . . . , n) = δuv V

h1,h2,ab
AG (P1,u, Pu+1,n)Jh1

(1, . . . , u)Jh2
(u + 1, . . . , n) (5.3)

+(1 − δuv)

v−1
∑

w=u

V
a′b′,h,ab
AAR (P1,u, Pw+1,vPv+1,n)Ja′b′

uw (1, . . . , v)Jh(v + 1, . . . , n),

where sums over repeated indices are always understood.

The indices α and β in table 1 refer to the two particles with negative helicity within

one MHV amplitude. The ε functions appearing in the vertices involving an auxiliary

4It is easy to see that all other assignments for (kl, kr) do not contribute in the color-ordered case.
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double-line keep track of the negative helicity gluons attached to them,

ε ≡

{

1, if #negative helicity gluons ≤ 2

0, if #negative helicity gluons > 2
. (5.4)

A vertex vanishes if the number of negative helicity gluons attached to a double-line is

greater than two, since this situation corresponds to a non-MHV amplitude, that has to

be decomposed further by means of the CSW relations. No permutation of the incoming

legs is allowed, since it would lead to double-counting. The respective rules in the MHV

decomposition are obtained from the above by swaping helicities and replacing angular by

square brackets. In analogy to the double-line current, we can write the recursive relation

for the scalar off-shell current in terms of double-line and scalar off-shell currents

Jh(1, . . . , n) =
1

P 2
1,n

n−1
∑

k=1

[

V
h1,h2,h
GG (P1,k, Pk+1,n)Jh1

(1, . . . , k)Jh2
(k + 1, . . . , n) (5.5)

+

k−1
∑

u=1

k−1
∑

v=u

V
ab,h1,h
GAR (P1,u, Pv+1,k, Pk+1,n)Jab

uv(1, . . . , k)Jh1
(k + 1, . . . , n)

]

.

Notice that the second term vanishes for k = 1 due to the vanishing of all one-point

double-line currents.

The vertices given in table 1 correspond to the situation where all gluons are attached

on one side of the double-line. We will refer to these vertices as the right-handed vertices.

The right-handed vertices are sufficient to construct all MHV amplitudes. However, it is

convenient for the subsequent color dressing of the CSW rules to recast eq. (5.5) into a

symmetric form. To do so, first we define left-handed vertices where all the gluons are

attached to the opposite side of the double-line. These vertices are shown in table 2.5 In

the left-handed decomposition, the recursive relations eq. (5.3) and eq. (5.5) read

Jab
uv(1, . . . , n) = δuv V

h1,h2,ab
AG (P1,u, Pu+1,n)Jh1

(1, . . . , u)Jh2
(u + 1, . . . , n) (5.6)

+ (1 − δuv)

v
∑

w=u+1

V
h,a′b′,ab
AAL (P1,u, Pu+1,w, Pv+1,n)Jh(1, . . . , u)Ja′b′

wv (u + 1, . . . , n),

Jh(1, . . . , n) =
1

P 2
1,n

n−1
∑

k=1

[

V
h1,h2,h
GG (P1,k, Pk+1,n)Jh1

(1, . . . , k)Jh2
(k + 1, . . . , n) (5.7)

+

n−k−1
∑

u=1

n−k−1
∑

v=u

V
h1,ab,h
GAL (P1,k, Pk+1,u, Pv+1,n)Jh1

(1, . . . , k)Jab
uv(k + 1, . . . , n)

]

.

Combining the right- and left-handed decompositions, it is possible to write the recur-

sive relations in a symmetric form involving both right-handed and left-handed vertices

Jab
uv(1, . . . , n) = δuv V

h1,h2,ab
AG (P1,u, Pu+1,n)Jh1

(1, . . . , u)Jh2
(u + 1, . . . , n) (5.8)

5As VGG and VAG are the same in both the right and left-handed decompositions, we do not list them

again in table 2.
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Left-handed Vertices
i j

k
V

hi,ajbj ,akbk

AAL (i, jl, jr) =
1

〈ijl〉
δkliδkrjr

ε(hi, ajbj , akbk)

i j

k
V

hi,ajbj ,hk

GAL (i, jl, jr) =
〈αβ〉4

〈jrk〉〈ki〉〈ijl〉
ε(hi, ajbj, hk)

Table 2: Left-handed basic building blocks in the MHV decomposition of color-ordered amplitudes

in the CSW approach.

+ (1 − δuv)
1

2

v−1
∑

w=u

V
a′b′,h,ab
AAR (P1,u, Pw+1,v, Pv+1,n)Ja′b′

uw (1, . . . , v)Jh(v + 1, . . . , n)

+ (1 − δuv)
1

2

v
∑

w=u+1

V
h,a′b′,ab
AAL (P1,u, Pu+1,w, Pv+1,n)Jh(1, . . . , u)Ja′b′

wv (u + 1, . . . , n),

Jh(1, . . . , n) =
1

P 2
1,n

n−1
∑

k=1

[

V
h1,h2,h
GG (P1,k, Pk+1,n)Jh1

(1, . . . , k)Jh2
(k + 1, . . . , n) (5.9)

+
1

2

k−1
∑

u=1

k−1
∑

v=u

V
ab,h1,h
GAR (P1,u, Pv+1,k, Pk+1,n)Jab

uv(1, . . . , k)Jh1
(k + 1, . . . , n)

+
1

2

n−k−1
∑

u=1

n−k−1
∑

v=u

V
h1,ab,h
GAL (P1,k, Pk+1,u, Pv+1,n)Jh1

(1, . . . , k)Jab
uv(k + 1, . . . , n)

]

.

These recursive relations, equivalent to the CSW vertex rules, can be solved simultaneously

to construct the scalar off-shell current. The difference to the pure CSW approach without

decomposition of the MHV vertices lies in the fact that the number of different vertices

in eq. (5.8) and eq. (5.9) is fixed and does not grow with the number of particles. The

approach thereby differs from the one presented in ref. [29]. Furthermore, as the number of

different vertices is fixed and as only three-point vertices are present, these new recursive

relations are well suited to be compared to the Berends-Giele recursive relations.

We now turn to the color dressing of the new CSW-like recursive relations. The pro-

cedure is very similar to the Berends-Giele case, but it contains some technical subtleties.

The interested reader may refer to appendix A for a detailed discussion. As the new re-

cursive relations only contain three-point vertices, we expect the color-dressed vertices to

be of the same form as in eq. (3.17),

V(P,Q) = δḠ
L δK̄

N δM̄
H VR(P,Q) + δḠ

NδM̄
L δK̄

H VL(Q,P ). (5.10)

In the color-flow basis, the scalar off-shell currents are defined in the usual way

J IJ̄
h (1, . . . , n) =

∑

σ∈Sn

δJ̄
iσ1

δ
̄σ1

iσ2
. . . δ

̄σn

I Jh(σ1, σ2 . . . , σn). (5.11)
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The color-dressed n-point double-line currents are defined by

J ab,IJ̄
πlπr

(πl, πm, πr) =
∑

σ∈Su

∑

σ′∈Sv−u

∑

σ′′∈Sn−v

[

δJ̄
iσl,1

. . . δ
̄σl,u

iσ′

m,u+1

. . . δ
̄σ′

m,v

iσ′′

r,v+1

. . . δ
̄σ′′

r,n

I (5.12)

Jab
uv(σπl

, σ′
πm

, σ′′
πr

) + δJ̄
iσ′′

r,v+1

. . . δ
̄σ′′

r,n

iσ′

m,u+1

. . . δ
̄σ′

m,v

iσl,1
. . . δ

̄σl,u

I

Jab
(n−v)(n−u)(σ

′′
πr

, σ′
πm

, σπl
)

]

,

where πl and πr are two proper subsets of {1, 2, . . . , n} referring to the momenta flowing in

each line separately, (kl, kr) = (Pπl
, Pπr ), and πm is defined by πl ⊕πm ⊕πr = {1, 2, . . . , n}

(Notice that πm may be empty). On the right-hand side of eq. (5.12), the indices (u, v) of

the color-ordered currents are defined by (u, v) = (#πl, n − #πr) and

πl = {π1
l , π

2
l , . . . , π

u
l },

πm = {πu+1
m , πu+2

m , . . . , πv
m},

πr = {πv+1
r , πv+2

r , . . . , πn
r }.

(5.13)

Finally, the symbols σi,j are defined by σi,j = σ(πj
i ). Notice that due to the second term

appearing in eq. (5.12), a color-dressed n-point double-line current is symmetric in (πl, πr).

The color dressing is similar to the Berends-Giele case and the result is

J IJ̄
h (1, . . . , n) =

1

P 2
1,n

[

∑

π∈P (n,2)

Vh1,h2,h
GG (Pπ1

, Pπ2
)J KL̄

h1
(π1)J

MN̄
h2

(π2) (5.14)

+
1

2

∑

π∈OP (n,3)

Vab,h1,h
GA (Pπ1

, Pπ2
, Pπ3

)J ab,KL̄
π1π2

(π1, π2)J
MN̄
h1

(π3)

+
1

2

∑

π∈OP (n,4)

Vab,h1,h
GA (Pπ1

, Pπ3
, Pπ4

)J ab,KL̄
π1π3

(π1, π2, π3)J
MN̄
h1

(π4)

]

,

J ab,IJ̄
πl,πr

(πl, πm, πr) = δuv Vh1,h2,ab
AG (Pπl

, Pπr)J
KL̄
h1

(πl) J
MN̄
h2

(πr) (5.15)

+ (1 − δuv)
1

2

[

Va′b′,h,ab
AA (Pπl

, Pπm , Pπr) J
a′b′,KL̄
πlπ2

(πl, πm) JMN̄
h (πr)

+
∑

π∈OP (πm,2)

Va′b′,h,ab
AA (Pπl

, Pπ2
, Pπr) J

a′b′,KL̄
πlπ2

(πl, π1, π2) J
MN̄
h (πr)

+ (πl ↔ πr)

]

,

where in eq. (5.15) OP (πm, 2) is the set of all ordered partitions of πm into two independent

parts.

Apart from a few subtleties, the procedure of the color dressing is now similar to the

Berends-Giele case. A detailed discussion is given in appendix A. The main differences are

the following:
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• As the color-dressed vertices, eq. (5.10), have both right and left-handed contribu-

tions, the symmetric form for the color-ordered recursive relations, eq. (5.8) and

eq. (5.9) is employed.

• The contributions coming from the u = v and u 6= v terms in eq. (5.8) and eq. (5.9)

are treated separately. For example, the u = v and u 6= v contributions in eq. (5.9)

give rise to the OP (n, 3) and OP (n, 4) terms in eq. (5.14), respectively.

Apart from these, the new CSW-like recursive relations retain the same form as the cor-

responding color-ordered relations with the difference that in the color-ordered case the

sum goes over unordered objects. Furthermore, as in the color-ordered case, the number

of different vertices is fixed and only three-point vertices appear in the recursive relations.

Therefore we may compare them to the color-dressed Berends-Giele recursive relation pre-

sented in section 3.

6. Numerical results

All relations for calculating multi-gluon amplitudes presented in the previous sections have

been implemented into C++ Monte Carlo programs using the tools set ATOOLS-2.0 and

the integration package PHASIC++-1.0 [3]. A comparison of calculation times for helicity

summed color-ordered amplitudes versus the results obtained in ref. [30] has been per-

formed. Our implementations yield exactly the same growth in computation time, except

for the CSW rules, where we gain considerably due to rewriting the CSW vertex rules in

terms of recursive relations for internal lines. Furthermore we have checked, employing the

color-flow basis, that the color-dressed relations yield the same results as the calculations

employing color-ordered amplitudes along with the color-flow decomposition presented in

ref. [25]. Using the adjoint representation, we have checked that the color-dressed BCF

relations yield the same result as the color-ordered ones along with a decomposition of the

total amplitude in the adjoint basis.

A comparison of the computation times for the various approaches using the color-

flow basis can be found in table 3. The color-dressed Berends-Giele relations are the

fastest method for more than five final state gluons. For less than six final state gluons the

color-flow decomposition using color-ordered amplitudes calculated according to the BCF

recursion performs better. In this case only few valid color flows exist [25] and primarily

(or only) MHV vertices contribute. For those the computation time increases only linearly

with the number of final state particles in the color-ordered BCF relations.

It is apparent that the computation times in the color-dressed BCF and in the color-

dressed CSW case grow very fast. In the case of the CSW relations the reason is the

number of types of internal lines, which is larger than in the Berends-Giele and in the BCF

approach. In this respect it is important to note that each double line may eventually

carry zero, one or two indices of attached negative helicity gluons. Additionally, in most

cases two vertices exist for either of these lines (cf. table 1), yielding a large amount of

lines that finally have to be computed. However, the growth we encounter by employing

this method is still not factorial but exponential. Nevertheless the factor in the exponent
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is still too large for the method to be competitive with the Berends-Giele approach. This

fact is illustrated in table 4, where we list the average number of nonzero internal lines

counted either by value or by origination vertex. The former corresponds to the average

number of nonzero currents in the Berends-Giele approach.

Employing the color-dressed BCF relations, we encounter a factorial growth of the

computation time. We have identified three main reasons:

• The subamplitudes are linked by the spinor shifts.

• The natural color basis is the adjoint basis.

• The amplitudes are decomposed down to three-point vertices.

We address these points in order.

In the color-dressed as well as in the color-ordered BCF relations, eqs. (4.1) and (4.12),

the subamplitudes of a given decomposition are linked via the shifts eqs. (4.2)–(4.4). Thus

the BCF relations need a recursive calculation of subamplitudes in the sense that the total

amplitude is to be decomposed successively into smaller building blocks, finally yielding

only three-point MHV vertices. In other words, we have to take eq. (4.12) literally and ap-

ply a top-down approach of the computation, since for the evaluation of each subamplitude

all previous spinor shifts have to be computed. Figuratively speaking, this is due to the fact

that in the BCF recursion all subamplitudes “remember” which decomposition they orig-

inated from, thus inhibiting the calculation of general color-dressed subamplitudes. This

fact is also illustrated in table 4, where we list the average number of distinct nonzero MHV

vertices and the average number of distinct assignments of unshifted momenta at these ver-

tices. The latter corresponds to the average number of internal lines in the CSW approach,

counted by origination vertex. It grows much slower than the former, although faster than

for example the average number of nonzero currents in the Berends-Giele relations.

Final BG BCF CSW

State CO CD CO CD CO CD

2g 0.24 0.28 0.28 0.33 0.31 0.26

3g 0.45 0.48 0.42 0.51 0.57 0.55

4g 1.20 1.04 0.84 1.32 1.63 1.75

5g 3.78 2.69 2.59 7.26 5.95 5.96

6g 14.2 7.19 11.9 59.1 27.8 30.6

7g 58.5 23.7 73.6 646 146 195

8g 276 82.1 597 8690 919 1890

9g 1450 270 5900 127000 6310 29700

10g 7960 864 64000 - 48900 -

Table 3: Computation time (s) of the 2 → n gluon amplitudes for 104 phase space points, sam-

pled over helicity and color. Results are given for the color-ordered (CO) and the color-dressed

(CD) Berends-Giele (BG), Britto-Cachazo-Feng (BCF) and Cachazo-Svrček-Witten (CSW) rela-

tions. Numbers were generated on a 2.66 GHz XeonTM CPU.
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Final Currents Internal lines (CSW) by MHV vertices (BCF) by

State (BG) vertex value vertex value

2g 7.04 3.48 7.56 1.98 1.98

3g 19.50 8.56 27.45 4.43 4.57

4g 44.67 18.58 109.0 14.13 18.17

5g 95.74 38.63 407.4 63.88 126.3

6g 198.8 78.25 1648 297.2 1026

7g 405.8 157.8 6773 1395 10330

8g 850.3 325.8 31340 6073 124600

Table 4: Average number of nonzero currents in the color-dressed Berends-Giele relations, average

number of internal lines in the CSW approach and average number of nonzero MHV vertices in the

color-dressed BCF relations using the color-flow decomposition. MHV vertices in BCF are counted

either by distinct value or by distinct assignment of unshifted external momenta. Internal lines in

CSW are counted either by vertex or by distinct value.

When applying the top-down procedure of the computation described above, it is nec-

essary to avoid the calculation of terms yielding zero due to the color assignment of external

and internal lines. This can be done in two steps. First, all valid color flows are identified

employing an algorithm similar to the one used for the Berends-Giele recursion. Second,

the subamplitudes are calculated only for the valid color structures. The calculation can

be alleviated if the reference particles in the recursion are chosen such that together they

form a color current having a nonvanishing contribution to the respective amplitude. Since

there exists no decomposition assigning both particles to a common subamplitude, the

corresponding color current does not contribute anymore. This procedure eliminates many

terms in the recursion, but it is still insufficient in the case of the color-flow basis. In fact

we expect some redundancy in the calculation of color-ordered subamplitudes due to the

dual Ward identities, which is introduced by fixing the reference particles for all possible

color flows of an amplitude simultaneously, cf. eq. (4.12). To see this, consider a dual Ward

identity of the form

A(2, 1, 3, . . . , n) = −
∑

l 6=2; 1≤l<n

A(1, . . . , l, 2, l + 1, . . . , n) . (6.1)

Assume that particles 1 and n have been fixed to be the reference particles in the recursion

and the ordering {2, 1, 3, . . . , n} yields a valid color flow. In this case the above choice

of reference particles is actually inconvenient to calculate the respective contribution to

the total amplitude, since the sum on the right hand side of eq. (6.1) could be replaced

by the one term on the left hand side. This problem does not occur in the color-ordered

case, since the reference particles are chosen separately for each color flow. To illustrate

this, in table 5 we compare the ratio of the average number of distinct nonzero MHV

vertices in the color-dressed and the color-ordered BCF relations for the color-flow basis

and the adjoint representation incorporating all simplifications described above. In the

adjoint representation the color-dressed relations yield less terms than the color-ordered
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Process Color flow Adjoint

gg → 2g 0.78 0.86

gg → 3g 0.83 0.74

gg → 4g 0.94 0.60

gg → 5g 1.14 0.51

gg → 6g 1.44 0.44

Table 5: Ratio of the average number of nonzero MHV vertices in the color dressed and the

color-ordered case in the color-flow and the adjoint representation decomposition.

Process CO CD

general MHV 3-point MHV

gg → 2g 1.28 2.55 1.98

gg → 3g 1.84 5.51 4.57

gg → 4g 7.41 19.33 18.17

gg → 5g 48.78 110.7 126.3

gg → 6g 318.3 714.7 1026

gg → 7g 2329 5269 10330

gg → 8g 20650 46890 124600

Table 6: Average number of nonzero MHV vertices in the color-flow decomposition for the color-

ordered (CO) and the color-dressed (CD) BCF relations.

ones, since the adjoint representation naturally avoids the problem of encountering singlet

gluons, that decouple. However, much more effort is spent on the computation of color

factors in the adjoint representation [25], such that it is not the method of choice.

In the color-dressed BCF relations each amplitude is decomposed completely into three-

point vertices. In contrast, in the color-ordered case, any MHV amplitude occuring in any

step of the recursion can be evaluated immediately. To highlight the differences due to this

treatment, table 6 shows a comparison of the average number of distinct nonzero MHV

vertices that have to be evaluated in the color-dressed and in the color-ordered case. We

also give the same number for the color-ordered case, when each amplitude is decomposed

into three-point vertices as well.

7. Conclusions

We have presented a new approach to the calculation of multi-parton amplitudes which

extends the recursive relations for the color-ordered amplitudes to relations for the full

colored amplitudes. We have argued that in general these new color-dressed relations

should be more suitable for a numerical implementation since they naturally avoid the

factorial growth implicit in taking the sum over the permutations of the possible color

flows in an amplitude. The taming of the factorial growth to an exponential one is easily
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proved in the color-dressed formulation of the Berends-Giele recursive relations which we

find to be the same as the Schwinger-Dyson approach introduced in ref. [21] and equivalent

to the ALPHA algorithm of ref. [31]. Using a similar approach but exploiting the adjoint

color basis decomposition, eq. (2.3), we have proved a new formulation of the BCF relations,

eq. (4.12), which involves the full amplitudes, including color, and retains the same formal

simplicity of the original formulation. Finally, we have considered the CSW relations. In

this case we had first to recast them in a form similar to the Berends-Giele relation through

the introduction of a new type of three-point vertices and effective particles, eqs. (5.8), (5.9).

It is interesting to note that while for the Berends-Giele relations the color dressing is

straightforward due to the close correspondence to the Feynman diagram approach, this is

far less trivial for the BCF and CSW relations, for which there is no direct relation to the

standard quantum field theory perturbative approach.

To test the numerical efficiency of the different formulations we have also implemented

the corresponding algorithms and computed squared amplitudes for 2 → n gluon scatter-

ing, by performing the sum over helicities and color with a Monte Carlo method. Our

results clearly show the numerical superiority of the recursive formulation by Berends and

Giele over all twistor-inspired methods, both from the point of view of the growth of com-

plexity with n and the simplicity of the implementation. For the color-ordered amplitude

formulation we confirm the results of ref. [30] except for the CSW relations, on which we

improve considerably by bringing them to the same level of complexity as the BCF rela-

tions. The color-dressed formulations of the BCF and CSW relations perform worse than

the corresponding color-dressed Berends-Giele relations for different reasons. The BCF

relations are penalized by their top-down structure, i.e., the fact that for each helicity and

color configuration the decomposition in terms of amplitudes with smaller multiplicity has

to be found, and from the fact that their natural (and minimal) color basis is the adjoint

basis which is computationally quite heavy. The “improved” color-dressed CSW relations

instead suffer from the presence of a large number of elementary line types and effective

three-point vertices which eventually affect the overall growth of the algorithm.

In conclusion, we have shown how color can be included in the color-stripped recur-

sive relations coming from twistor-inspired methods that do not have a straightforward

relation with a standard perturbative Lagrangian approach. The resulting color-dressed

BCF relations can be easily derived by employing the adjoint color decomposition, which

exactly matches onto the BCF structure, and retain the same very elegant form of their

color-ordered counterpart. In this respect, it is suggestive to speculate that similar col-

ored relations might be derived also for one-loop amplitudes, for which an analogous color

decomposition holds and may be deduced from an effective QCD Lagrangian, still un-

known.
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A. Derivation of the color-dressed CSW relations

In this appendix we give a detailed derivation for the color dressing of the CSW-like re-

cursive relations presented in section 5. We start with the color dressing of the recursive

relations for the double-line current. As we want all color-dressed vertices to be of the form

given in eq. (5.10), involving both right-handed and left-handed contributions, we use the

symmetric form of the recursive relation, eq. (5.8). We will consider the terms for u = v

and u 6= v appearing in eq. (5.8) separately and we will start with the u = v term. This

term corresponds to πm = ∅. Inserting it into the definition (5.12), we obtain

∑

σ∈Su

∑

σ′′∈Sn−u

[

δJ̄
iσl,1

. . . δ
̄σl,u

iσ′′

r,u+1

. . . δ
̄σ′′

r,n

I V
h1,h2,ab
AG (Pσπl

, Pσ′′

πr
)Jh1

(σπl
)Jh2

(σ′′
πr

) (A.1)

+ δJ̄
iσ′′

r,u+1

. . . δ
̄σ′′

r,n

iσl,1
. . . δ

̄σl,u

I V
h2,h1,ab
AG (Pσ′′

πr
, Pσπl

)Jh2
(σ′′

πr
)Jh1

(σπl
)

]

.

The decomposition of the two color factors is similar to the Berends-Giele case, eq. (3.10),

δJ̄
iσl,1

. . . δ
̄σl,u

iσ′′

r,u+1

. . . δ
̄σ′′

r,n

I = δJ̄
LδK̄

N δM̄
I δL̄

iσl,1
. . . δ

̄σl,u

K δN̄
iσ′′

r,u+1

. . . δ
̄σ′′

r,n

M , (A.2)

δJ̄
iσ′′

r,u+1

. . . δ
̄σ′′

r,n

iσl,1
. . . δ

̄σl,u

I = δJ̄
NδM̄

L δK̄
I δN̄

iσ′′

r,u+1

. . . δ
̄σ′′

r,n

M δL̄
iσl,1

. . . δ
̄σl,u

K . (A.3)

As Pσπl
= Pπl

and Pσ′′

πr
= Pπr , we can identify two scalar subcurrents in eq. (A.1)

JKL̄
h1

(πl) =
∑

σ∈Su

δL̄
iσl,1

. . . δ
̄σl,u

K Jh1
(σπl

), (A.4)

J MN̄
h2

(πr) =
∑

σ′′∈Sn−u

δN̄
iσ′′

r,u+1

. . . δ
̄σ′′

r,n

M Jh2
(σ′′

πr
), (A.5)

and so the u = v term reads

(

δJ̄
LδK̄

N δM̄
I V

h1,h2,ab
AG (Pπl

, Pπr) + δJ̄
NδM̄

L δK̄
I V

h2,h1,ab
AG (Pπr , Pπl

)
)

J KL̄
h1

(πl)J
MN̄
h2

(πr). (A.6)

We define the color-dressed AG-vertex as6

Vh1,h2,ab
AG (Pπl

, Pπr) = δJ̄
LδK̄

N δM̄
I V

h1,h2,ab
AG (Pπl

, Pπr ) + δJ̄
NδM̄

L δK̄
I V

h2,h1,ab
AG (Pπr , Pπl

), (A.7)

and so finally the u = v term reads

Vh1,h2,ab
AG (Pπl

, Pπr )J
KL̄
h1

(πl)J
MN̄
h2

(πr). (A.8)

We now turn to the u 6= v term in eq. (5.8). This term has four contributions, corresponding

to the right-handed and left-handed decompositions for each of the two terms appearing

in eq. (5.12). We will show the color dressing of the right-handed decomposition of the

6As for the Berends-Giele case, the color indices of the vertices are suppressed.
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first term in eq. (5.12) explicitly. The three remaining contributions can be obtained in a

similar way. The right-handed contribution to the first term in eq. (5.12) gives

∑

σ∈Su

∑

σ′∈Sv−u

∑

σ′′∈Sn−v

v−1
∑

w=u

V
a′b′,h,ab
AAR (Pσπl

, Pσ′

m,w+1
,σ′

m,v
, Pσ′′

πr
) (A.9)

δJ̄
iσl,1

. . . δ
̄σl,u

iσ′

m,u+1

. . . δ
̄σ′

m,v

iσ′′

r,v+1

. . . δ
̄σ′′

r,n

I Ja′b′

uw (σπl
, σ′

πm
)Jh(σ′′

πr
).

The color factor is decomposed in the usual way

δJ̄
iσl,1

. . . δ
̄σl,u

iσ′

m,u+1

. . . δ
̄σ′

m,v

iσ′′

r,v+1

. . . δ
̄σ′′

r,n

I = (A.10)

δJ̄
LδK̄

N δM̄
I δL̄

iσl,1
. . . δ

̄σl,u

iσ′

m,u+1

. . . δ
̄σ′

m,v

K δN̄
iσ′′

r,v+1

. . . δ
̄σ′′

r,n

M .

As Pσπl
= Pπl

and Pσ′′

πr
= Pπr , we can immediately identify the color-dressed scalar

subcurrent

J MN̄
h (πr) =

∑

σ′′∈Sn−v

δN̄
iσ′′

r,v+1

. . . δ
̄σ′′

r,n

M Jh(σ′′
πr

), (A.11)

and we are left with

∑

σ∈Su

∑

σ′∈Sv−u

v−1
∑

w=u

δJ̄
LδK̄

N δM̄
I V

a′b′,h,ab
AAR (Pπl

, Pσ′

m,w+1
,σ′

m,v
, Pπr) (A.12)

δL̄
iσl,1

. . . δ
̄σl,u

iσ′

m,u+1

. . . δ
̄σ′

m,v

K Ja′b′

uw (σπl
, σ′

πm
)J MN̄

h (πr).

We will now consider the contributions coming from w = u and w > u separately. For

w = u we find, with Pσ′

m,u+1
,σ′

m,v
= Pσ′

πm
= Pπm ,

∑

σ∈Su

∑

σ′∈Sv−u

δJ̄
LδK̄

N δM̄
I V

a′b′,h,ab
AAR (Pπl

, Pπm , Pπr) (A.13)

δL̄
iσl,1

. . . δ
̄σl,u

iσ′

m,u+1

. . . δ
̄σ′

m,v

K Ja′b′

uu (σπl
, σ′

πm
)J MN̄

h (πr) .

Due to the Kronecker-deltas appearing in the definition of VAAR (See table 1), one has

V
a′b′,h,ab
AAR (Pπl

, Pπm , Pπr)Ja′b′

(v−u)(v−u)(σ
′
πm

, σπl
) = 0, (A.14)

and so eq. (A.13) can be written

∑

σ∈Su

∑

σ′∈Sv−u

δJ̄
LδK̄

N δM̄
I V

a′b′,h,ab
AAR (Pπl

, Pπm , Pπr )J
MN̄
h (πr) (A.15)

(

δL̄
iσl,1

. . . δ
̄σl,u

iσ′

m,u+1

. . . δ
̄σ′

m,v

K Ja′b′

uu (σπl
, σ′

πm
)

+ δL̄
iσ′

m,u+1

. . . δ
̄σ′

m,v

iσl,1
. . . δ

̄σl,u

K Ja′b′

(v−u)(v−u)(σ
′
πm

, σπl
)
)

,
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where the second term vanishes according to eq. (A.14). This second term corresponds to

the second term in eq. (5.12)

J ab
πlπm

(πl, πm) =
∑

σ∈Su

∑

σ′∈Sv−u

(

δL̄
iσl,1

. . . δ
̄σl,u

iσ′

m,u+1

. . . δ
̄σ′

m,v

K Ja′b′

uu (σπl
, σ′

πm
) (A.16)

+ δL̄
iσ′

m,u+1

. . . δ
̄σ′

m,v

iσl,1
. . . δ

̄σl,u

K Ja′b′

(v−u)(v−u)(σ
′
πm

, σπl
)
)

.

So for w = u, we get

δJ̄
LδK̄

N δM̄
I V

a′b′,h,ab
AAR (Pπl

, Pπm , Pπr )J
a′b′, KL̄
πlπm

(πl, πm)J MN̄
h (πr). (A.17)

For w > u, we can rewrite the sums over w and σ′ in a similar way as in the Berends-Giele

case, eq. (3.11),
v−1
∑

w=u+1

∑

σ′∈Sv−u

→
∑

π∈OP (πm,2)

∑

σ′∈Sw−u

∑

σ′′∈Sv−w

, (A.18)

where OP (πm, 2) is the set of all ordered partitions of πm into 2 independent parts. This

rearrangement gives, with Pσ′′

m,w+1
,σ′′

m,v
= Pσ′′

π2
= Pπ2

,

∑

π∈OP (πm,2)

∑

σ∈Su

∑

σ′∈Sw−u

∑

σ′′∈Sv−w

δJ̄
LδK̄

N δM̄
I V

a′b′,h,ab
AAR (Pπl

, Pπ2
, Pπr) (A.19)

δL̄
iσl,1

. . . δ
̄σl,u

iσ′

m,u+1

. . . δ
̄σ′

m,v

K Ja′b′

uw (σπl
, σ′

π1
, σ′′

π2
)J MN̄

h (πr),

where π = (π1, π2) is an ordered partition of πm and w = #π1. Due to the Kronecker-deltas

in the definition of VAAR, we have in a similar manner as for eq. (A.14)

V
a′b′,h,ab
AAR (Pπl

, Pπ1
, Pπr)J

a′b′

(v−w)(v−u)(σ
′′
π2

, σ′
π1

, σπl
) = 0. (A.20)

Using this relation, we can identify a color-dressed double-line current in a similar way as

for the w = u contribution. The w > u contribution reads

∑

π∈OP (πm,2)

δJ̄
LδK̄

N δM̄
I V

a′b′,h,ab
AAR (Pπl

, Pπ2
, Pπr) J

a′b′,KL̄
πlπ2

(πl, π1, π2)J
MN̄
h (πr). (A.21)

Putting together the w = u and w > u terms, we find the contribution from the right-

handed decomposition of the first factor in eq. (5.12)

δJ̄
LδK̄

N δM̄
I V

a′b′,h,ab
AAR (Pπl

, Pπm , Pπr) J
a′b′,KL̄
πlπm

(πl, πm)J MN̄
h (πr) (A.22)

+
∑

π∈OP (πm,2)

δJ̄
LδK̄

N δM̄
I V

a′b′,h,ab
AAR (Pπl

, Pπ2
, Pπr)J

a′b′,KL̄
πlπ2

(πl, π1, π2)J
MN̄
h (πr).

Similar terms are obtained for the remaining three contributions. Adding up all the con-

tributions, we find for the u 6= v term

Va′b′,h,ab
AA (Pπl

, Pπm , Pπr) J
a′b′,KL̄
πlπm

(πl, πm) JMN̄
h (πr) (A.23)

+ Va′b′,h,ab
AA (Pπr , Pπm , Pπl

) J a′b′,KL̄
πmπr

(πm, πr) J
MN̄
h (πl)

– 25 –



J
H
E
P
0
8
(
2
0
0
6
)
0
6
2

+
∑

π∈OP (πm,2)

[

Va′b′,h,ab
AA (Pπl

, Pπ2
, Pπr ) J

a′b′,KL̄
πlπ2

(πl, π1, π2) J
MN̄
h (πr)

+Va′b′,h,ab
AA (Pπr , Pπ2

, Pπl
) J a′b′,KL̄

πrπ2
(πr, π1, π2) J

MN̄
h (πl)

]

,

where the color-dressed AA-vertex is defined as

Va′b′,h,ab
AA (Pπ1

, Pπ2
, Pπ3

) = δJ̄
LδK̄

N δM̄
I V

a′b′,h,ab
AAR (Pπ1

, Pπ2
, Pπ3

) (A.24)

+ δJ̄
NδM̄

L δK̄
I V

h,a′b′,ab
AAL (Pπ3

, Pπ2
, Pπ1

) .

Finally the recursive relations for the double-line current read

J ab,IJ̄
πl,πr

(πl, πm, πr) = δuv Vh1,h2,ab
AG (Pπl

, Pπr)J
KL̄
h1

(πl) J
MN̄
h2

(πr) (A.25)

+(1 − δuv)
1

2

[

Va′b′,h,ab
AA (Pπl

, Pπm , Pπr ) J
a′b′,KL̄
πlπm

(πl, πm) JMN̄
h (πr)

+
∑

π∈OP (πm,2)

Va′b′,h,ab
AA (Pπl

, Pπ2
, Pπr) J

a′b′,KL̄
πlπ2

(πl, π1, π2) J
MN̄
h (πr)

+(πl ↔ πr)

]

,

which is eq. (5.15) stated in section 5.

We now turn to the color dressing of the recursive relations for the scalar off-shell

currents, and we use again the symmetric form of the recursive relations, eq. (5.9). The

color dressing of the pure gluon part is identical to the color dressing of the three-gluon

vertex part for the Berends-Giele recursive relations, and it evaluates to
∑

π∈P (n,2)

Vh1,h2,h
GG (Pπ1

, Pπ2
)J KL̄

h1
(π1)J

MN̄
h2

(π2). (A.26)

The term in eq. (5.9) involving a double-line current has contributions from both the right-

handed and the left-handed decompositions. We will only show the color dressing for the

right-handed contribution here. The left-handed contribution can be obtained in a similar

way. The right-handed contribution reads7

∑

σ∈Sn

n−1
∑

k=2

k−1
∑

u=1

k−1
∑

v=u

δJ̄
iσ1

. . . δ
̄σn

I V
ab,h1,h
GAR (Pσ1,σu , Pσv+1,σk

, Pσk+1,σn) (A.27)

Jab
uv(σ1, . . . , σk)Jh1

(σk+1, . . . , σn) .

We consider the terms corresponding to u = v and u 6= v separately. The u = v term in

eq. (A.27) reads

∑

σ∈Sn

n−1
∑

k=2

k−1
∑

u=1

δJ̄
iσ1

. . . δ
̄σn

I V
ab,h1,h
GAR (Pσ1,σu , Pσu+1,σk

, Pσk+1,σn) (A.28)

7Recall that this term has no contribution from k = 1.
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Jab
uu(σ1, . . . , σk)Jh1

(σk+1, . . . , σn).

The color factor is decomposed in the usual way

δJ̄
iσ1

. . . δ
̄σn

I = δJ̄
LδK̄

N δM̄
I δL̄

iσ1
. . . δ

̄σk

K δN̄
iσk+1

. . . δ
̄σn

M . (A.29)

The sums appearing in this expression can be rearranged as

∑

σ∈Sn

n−1
∑

k=2

k−1
∑

u=1

→
∑

π∈OP (n,3)

∑

σ∈Su

∑

σ′∈Sk−u

∑

σ′′∈Sn−k

, (A.30)

where on the right-hand side u = #π1 and k = n − #π3 and OP (n, 3) is the set of all

ordered partitions of {1, 2, . . . , n} into three independent parts. Since

V
ab,h1,h
GAR (Pπ1

, Pπ2
, Pπ3

)Jab
(k−u)(k−u)(π2, π1) = 0, (A.31)

due to the Kronecker-deltas in the definition of VGAR, the result of the color dressing of

eq. (A.28) is

∑

π∈OP (n,3)

δJ̄
LδK̄

N δM̄
I V

ab,h1,h
GAR (Pπ1

, Pπ2
, Pπ3

)J ab,KL̄
π1π2

(π1, π2)J
MN̄
h1

(π3). (A.32)

Adding the left-handed contribution, we find

∑

π∈OP (n,3)

Vab,h1,h
GA (Pπ1

, Pπ2
, Pπ3

)J ab,KL̄
π1π2

(π1, π2)J
MN̄
h1

(π3), (A.33)

where the color-dressed GA-vertex is defined by

Vab,h1,h
GA (Pπ1

, Pπ2
, Pπ3

) =δJ̄
LδK̄

N δM̄
I V

ab,h1,h
GAR (Pπ1

, Pπ2
, Pπ3

) (A.34)

+ δJ̄
NδM̄

L δK̄
I V

h1,ab,h
GAL (Pπ3

, Pπ1
, Pπ2

) .

The color dressing of the u 6= v contribution in eq. (A.27) is similar to the u = v case,

except that we have to introduce the set OP (n, 4) of all ordered partitions of {1, . . . , n}

into four independent parts, and the rearrangement of the sums is now written

∑

σ∈Sn

n−1
∑

k=1

k−1
∑

u=1

k−1
∑

v=u+1

→
∑

π∈OP (n,4)

∑

σ∈Su

∑

σ′∈Sv−u

∑

σ′′∈Sk−v

∑

σ′′′∈Sn−k

, (A.35)

where on the right hand side u = #π1, v = #π1 + #π2 and k = n − #π4. The result of

the color dressing of the u 6= v contribution then reads

∑

π∈OP (n,4)

Vab,h1,h
GA (Pπ1

, Pπ3
, Pπ4

)J ab,KL̄
π1π3

(π1, π2, π3)J
MN̄
h1

(π4). (A.36)

Finally the color-dressed recursive relations for the scalar off-shell current read

J IJ̄
h (1, . . . , n) =

1

P 2
1,n

[

∑

π∈P (n,2)

Vh1,h2,h
GG (Pπ1

, Pπ2
)J KL̄

h1
(π1)J

MN̄
h2

(π2) (A.37)
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+
1

2

∑

π∈OP (n,3)

Vab,h1,h
GA (Pπ1

, Pπ2
, Pπ3

)J ab,KL̄
π1π2

(π1, π2)J
MN̄
h1

(π3)

+
1

2

∑

π∈OP (n,4)

Vab,h1,h
GA (Pπ1

, Pπ3
, Pπ4

)J ab,KL̄
π1π3

(π1, π2, π3)J
MN̄
h1

(π4)

]

,

which is eq. (5.14) stated in section 5.
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